Srinivasa Ramanujan was one of India's greatest mathematical geniuses. He made substantial contributions to the analytical theory of numbers and worked on elliptic functions, continued fractions, infinite series and many other fields.

Ramanujan was born on December 22, 1887 in Erode, Madras Presidency, at the residence of his maternal grandparents. His father, K. Srinivasa Iyengar, worked as a clerk in a sari shop and hailed from the district of Thanjavur. His mother, Komalatammal, was a housewife and also sang at a local temple. They lived in Sarangapani Street in a traditional home in the town of Kumbakonam. The family home is now a museum.

On 1 October 1892, Ramanujan was enrolled at the local school. In March 1894, he was moved to a Telugu medium school. After his maternal grandfather lost his job as a court official in Kanchipuram, Ramanujan and his mother moved back to Kumbakonam and he was enrolled in the Kangayan Primary School. After his paternal grandfather died, he was sent back to his maternal grandparents, who were now living in Madras. He did not like school in Madras. Within six months, Ramanujan was back in Kumbakonam.

Since Ramanujan's father was at work most of the day, his mother took care of him as a child. He had a close relationship with his mother learned tradition and puranas from her. He learned to sing religious songs and sholkas, to attend pujas at the temple and particular eating habits – all of which are part of Brahmin culture. At the Kangayan Primary School, Ramanujan performed well. Just before the age of 10, in November 1897, he passed his primary examinations in English, Tamil, geography and arithmetic. With his scores, he stood first in the district. That year, Ramanujan entered Town Higher Secondary School where he encountered formal mathematics for the first time.

By age 11, he had exhausted the mathematical knowledge of two college students who were lodgers at his home. He was later lent a book on advanced trigonometry written by S. L. Loney. He completely mastered this book by the age of 13 and discovered sophisticated theorems on his own. By 14, he was receiving merit certificates and academic awards which continued throughout his school career and also assisted the school in the logistics of assigning its 1200 students (each with their own needs) to its 35-odd teachers. He completed mathematical exams in half the allotted time, and showed a familiarity with infinite series. Ramanujan was shown how to solve cubic equations in 1902 and he went on to find his own method to solve the quartic. The following year, not knowing that the quintic could not be solved by radicals, he tried (and of course failed) to solve the quintic. In 1903 when he was 16, Ramanujan obtained from a friend a library-loaned copy of a book by G. S. Carr. The book was titled *A Synopsis of Elementary Results in Pure and Applied Mathematics* and was a collection of 5000 theorems. Ramanujan reportedly studied the contents of the book in detail. The book is generally acknowledged as a key element in awakening the genius of Ramanujan. The next year, he had independently developed and investigated the Bernoulli numbers and had calculated Euler's constant up to 15 decimal places. His peers at the time commented that they "rarely understood him" and "stood in respectful awe" of him.

When he graduated from Town Higher Secondary School in 1904, Ramanujan was awarded the K. Ranganatha Rao prize for mathematics by the school's headmaster, Krishnaswami Iyer. Iyer introduced Ramanujan as an outstanding student who deserved scores higher than the maximum possible marks. He received a scholarship to study at Government Arts College, Kumbakonam, However, Ramanujan was so intent on studying mathematics that he could not focus on any other subjects and failed most of them, losing his scholarship in the process. In August 1905, he ran away from home, heading towards Visakhapatnam and stayed in Rajahmundry for about a month. He later enrolled at Pachaiyappa's College in Madras. He again excelled in mathematics but performed poorly in other subjects. Ramanujan failed his Fine Arts degree exam in December 1906 and again a year later. Without a degree, he left college and continued to pursue independent research in mathematics. At this point in his life, he lived in extreme poverty and was often on the brink of starvation.

On 14 July 1909, Ramanujan was married to a nine-year old bride, Janaki Ammal and then searched for a job. He stayed at friends' houses while he went door to door around the city of Madras (now Chennai) looking for a clerical position. To make some money, he tutored some students at Presidency College who were preparing for their F.A. exam.

In late 1910, Ramanujan was sick again, possibly as a result of the surgery earlier in the year. He feared for his health, and even told his friend, R. Radakrishna Iyer, to "hand these [Ramanujan's mathematical notebooks] over to Professor Singaravelu Mudaliar [the mathematics professor at Pachaiyappa's College] or to the British professor Edward B. Ross, of the Madras Christian College." After Ramanujan recovered and got back his notebooks from Iyer, he took a northbound train from Kumbakonam to Villupuram, a coastal city under French control.

He met deputy collector V. Ramaswamy Aiyer, who had recently founded the Indian Mathematical Society. Ramanujan, wishing for a job at the revenue department where Ramaswamy Aiyer worked, showed him his mathematics notebooks. As Ramaswamy Aiyer later recalled:

I was struck by the extraordinary mathematical results contained in it [the notebooks]. I had no mind to smother his genius by an appointment in the lowest rungs of the revenue department.

Ramaswamy Aiyer sent Ramanujan, with letters of introduction, to his mathematician friends in Madras. Some of these friends looked at his work and gave him letters of introduction to R. Ramachandra Rao, the district collector for Nellore and the secretary of the Indian Mathematical Society. Ramachandra Rao was impressed by Ramanujan's research but doubted that it was actually his own work. Ramanujan mentioned a correspondence he had with Professor Saldhana, a notable Bombay mathematician, in which Saldhana expressed a lack of understanding for his work but concluded that he was not a phoney. Ramanujan's friend, C. V. Rajagopalachari, persisted with Ramachandra Rao and tried to quell any doubts over Ramanujan's academic integrity. Rao agreed to give him another chance, and he listened as Ramanujan discussed elliptic integrals, hypergeometric series, and his theory of divergent series, which Rao said ultimately "converted" him to a belief in Ramanujan's mathematical brilliance. When Rao asked him what he wanted, Ramanujan replied that he needed some work and financial support. Rao consented and sent him to Madras. He continued his mathematical research with Rao's financial aid taking care of his daily needs. Ramanujan, with the help of Ramaswamy Aiyer, had his work published in the *Journal of Indian Mathematical Society*.

Ramanujan's name will always be linked to Godfrey Harold Hardy, a British mathematician. It is not because Ramanujan worked with Hardy at Cambridge but it was Hardy who made it possible for Ramanujan to go to Cambridge. Hardy, widely recognised as the leading mathematician of his time, championed pure mathematics and had no interest in applied aspects. He discovered one of the fundamental results in population genetics which explains the properties of dominant, and recessive genes in large mixed population, but he regarded the work as unimportant.

*The author is teaching at Department of Mathematics, University of Kashmir*

No stories found.

Greater Kashmir

www.greaterkashmir.com